

 А इंटरनेट

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.
"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
"The Right to Information, The Right to Live"
"पुराने को छोड नये के तरफ" Jawaharlal Nehru "Step Out From the Old to the New"

IS 9300-2 (1989): Statistical models for industrial applications, Part 2: Continuous models [MSD 3: Statistical Methods for Quality and Reliability]

"Knowledge is such a treasure which cannot be stolen"

BLANK PAGE

AMENDMENT NO. 1 SEPTEMBER 1993
 TO
 IS 9300 (Part 2) : 1989 STATISTICAL MODELS FOR INDUSTRIAL APPLICATIONS

PART 2 CONTINUOUS MODELS

(First Revision)

(Page S, clause 9.4) - Insert the following new clause after 9.4:

9.4.1 Example

The following data gives the running time (in hours) of the 40 head boxes. Test whether the data follows the Weibull distribution:

249	259	844	65
303	309	121	32
649	21	146	43
23	104	99	301
130	52	584	21
411	177	583	508
643	281	173	9
180	169	248	42
128	173	524	883
212	547	31	85

The above data is arranged in the form of a frequency table as shown in Table 10.

The next step is to calculate the expected frequencies for each class interval under assumption that the data follcws Weibull distribution. For this purpose, one has to estimate the parameters β and λ of the Weibull model. For estimating the parameters, the natural logarithmic values of each of the x_{1} 's are obtained and thereafter the mean and the standard deviation of these x_{1} values are calculated.

For this example, mean $(\bar{v})=5.042 \mathrm{l}$; and
standard deviation $\left(s_{y}\right)=1 \cdot 16$
where, $y_{1}=\log x_{1}$.

The estimate of the parameters are then obtained from the following expression:

$$
\beta=\frac{\pi}{s_{y} \sqrt{6}} \text { and } \lambda=\exp \left[-\left(\bar{y}+\frac{0.57226)}{\beta}\right]\right.
$$

For this example, $\beta=1.1061$ and $\lambda=0.00385$
Using the above estimates of the parameters in the frequency distribution of the Weibull model, namely,
$F(x)=1-\exp \left[-(\lambda x)^{\beta}\right]$. where, $\beta=1.1061$ and $\lambda=0.00385$, the expected frequency for each class interval may be obtained as given in Table 10.

Goodness of Fit

The calculated value of γ^{9} for the example is 1.369 (see Table 11). The tabulated value of γ^{2} for 2 degrees of freedom at 5 percent levei of significance is 5.99 . Since the calculated value is less than the tabulated value, the null hypothesis that the data follows Weibull distribution is accepted.

Table 10 Frequency Table for Running Time of Head Boxes
(Clause 9.4.1)

$\underset{\text { Intervals }}{\text { Class }} \quad F_{1}$	Frequency	Upper Limit	$(\lambda x)^{\beta}$	$F(x)$	$\begin{aligned} & \mathbf{F}\left(x_{1}\right)- \\ & \mathbf{F}\left(x_{2}\right) \end{aligned}$	Expected Frequency
	$\left(O_{1}\right)$	(x)				(E_{1})
0.100	12	100	0.3479	0.2938	0.2938	11.75
101-200	10	200	0.7489	c. 5271	0.2233	9.33
201.300	5	300	1.1780	$0 \cdot 6906$	0.1635	6.54
301-400	3	400	1.6120	$0.800 \$$	0.1099	4.40
401-500	3	500	2.0640	0.8731	0.0726	2.90
501.600	2	600	2.5250	0.9199	0.0468	1.87.
601.700	2	700	29940	0.9499	0.0300	1.20
701.800	2	800	3.4700	0.9689	0.0190	0.76
801.900	1	900	3.9530	0.9808	0.0119	0.48
901 \& above	v 0	-	-	1.0000	0.0192	0.71

Table 11 Observed and Expected Frequencies
(Clause 9.4.1)

Obeerved Frequencles $\left(O_{1}\right)$	Expected Frequencies $\left(E_{1}\right)$	$\left(O_{1}-E_{1}\right)$	$\frac{\left(O_{1}-E_{1}\right)}{E_{1}}$
12	11.75	0.25	0
10	9.33	0.67	0.048
5	6.54	-1.54	0.363 .
$\left.\begin{array}{l}3 \\ 3\end{array}\right\} 6$	$\left.\begin{array}{l}4.40 \\ 2.90\end{array}\right\} 7.30$	-1.30	0.232
$\left.\begin{array}{l}2 \\ 2 \\ 2 \\ 1 \\ 0\end{array}\right\}$,	$\left.\begin{array}{l}1.87 \\ 1.20 \\ 0.76 \\ 0.48 \\ 0.77\end{array}\right\} \leq 08$	- 1.92	0.726
			Total $\overline{1.369}$

(MSB 3)

AMENDMENT NO. 2 SEPTEMBER 2000
 TO
 IS 9300(PART 2): 1989 STATISTICAL MODELS FOR INDUSTRIAL APPLICATIONS

PART 2 CONTINUOUS MODELS

(First Revision)
(Page 7, clause 7.4) - Insert the following clause at the end of 7.4:

7.5 Fitting a Gamma Model

7.5.1 Example - In a manufacturing process of jute proudcts, breaker card stage is the first stage of filamentation for the subsequent processing. From a sample of 10 cm carded sliver (strand of carded raw jute is called sliver), single fibres were segregated and their lengths were measured which are grouped in a frequency table (see Table 6).
Fit a gamma model to the above data and test its goodness of fit.

Table 6 Length of Fibres (mm) of Carded Silver

Cinss Interval	Frequency
$0-5$	350
$5-10$	575
$10-15$	500
$15-20$	325
$20-25$	215
$25-30$	135
$30-35$	50
$35-40$	25
$45-50$	5
Total	2190

Amend No. 2 to IS 9300 (Part 2): 1989

The mean \bar{x} and variance s^{2} as calculated from the frequency table are:

$$
\bar{x}=13.20 \mathrm{~mm} \text { and } s^{2}=72.63 \mathrm{~mm}
$$

The parameters of the gamma model η and λ can be calculated by solving the following conditions:

$$
\begin{aligned}
& \bar{x}=\eta \lambda \text { and } s^{2}=\eta \lambda^{2} \\
& \lambda=\bar{x} / 3^{2}=13.20 / 72.63=0.1817 \\
& \text { and } \eta=\lambda \bar{x}=2.399=2.40 \text { (approx) }
\end{aligned}
$$

The next step is to calculate the expected frequencies (e_{i}) based on the assumption that the above frequency distribution is coming from a gamma distribution. The steps are described in Table 7.

The probability for each class interval is obtained from the table of the Incomplete Gamma Function.

Table 7 Expected Frequencies Based on Gamma Distribution

Class Interval	x	$\Gamma(0.11738,1.4)$	Probability $\left(x_{L}<x<x_{m}\right)$	Expectod Frequency(ci)
$\left(x_{i}-x_{0}\right)$				
(1)	(2)	(3)	(4)	(5) $=2190 \times(4)$
0.5	5	0.149	0.149	326.31
5-10	10	0.424	0.275	602.25
10-15	15	0.662	0.238	521.22
15-20	20	0.815	0.153	335.07
20-25	25	0.901	0.066	188.34
25-30	30	0.955	0.054	118.26
30-35	35	0.977	0.022	48.18
35-40	40	0.969	0.012 .	26.28
40-45	45	0.995	0.006	13.14
45-50	50	0.988	0.003	6.57

Amend No. 2 to IS 9300 (Part 2) : 1989

Goodness of Fit from χ^{2} Test : After calculating expected frequencies (e_{i}) for each class interval, their closeness with the observed frequencies (ρ_{i}) are tested with the help of χ^{2} teat (see Table 8).

Table 8 Calculations for This χ^{2} Test

Cless	Oberrved	Expected	$\left(O_{i-c}\right)^{2} / 4$
Interval	Frequemdes ($O 1$)	Frequency (c)	
0.5	350	326.31	1.72
5-10	575	602.22	1.23
10.15	500	521.22	0.86
15-20	325	335.07	0.30
20-25	215	188.34	3.77
25-30	135	118.26	2.37
30-35	50	48.18	0.07 .
35-40	25	26.28	0.06
40.45	10	13.14	0.75
45-50	5	6.57	0.37

Total $x^{2}=11.50$
The total number of classes is 10 . Three degrees of freedom are apportioned for the estimation of mean, standard deviation and for cotal frequetrey. Thus calculated value of χ_{2}^{2} is compared with the tabulated value [see IS 6200 (Part 2) : 1977] of $\boldsymbol{x}^{2}=14.07$ for 7 degrees of freedom at 5 percent level of significance. Since the calculated value is less than the tabulated value the fit can be taken as good one.
(Page 8, Tables 6, 7, 8 and 9) - Table 6, Table 7, Table 8, Table 9 may be replaced by Table 9, Table 10, Table 11, Table 12 respectively.

Asend No. 2 to IS 9300 (Part 2) : 1989
(Page 8, clause 8.5) - In line 5, reference to Table 6 may be replaced by Trable 9.
(Page 8, clause 8.5.1) -In line 3, reference to Table 7 may be replaced by Table 10.
(Page 8, clause 8.5.2) - In line 4, reference to Table 8 may be replaced by Table 11.
(Page 8, clause 8.5.3) - In line 2, reference to Table 9 may be replaced by Table 12.
(Page 1, clause 9.4.1, Amendment No. 1) - In line 15, re erence to Table 10 may be replaced by Table 13.
(Page 2, clause 9.4.1, Amendment No. 1) - Keference to Tal .e 11 may be replaced by Table 14.
(Page 2, Table 10, Amendment No. 1) - Table 10 may se replaced by Table 13.
(Page 3, Table 11, Amendment No. 1) - Table 11 may be replaced by Table 14.
(MSD 3)

STATISTICAL MODELS FOR INDUSTRIAL APPLICATIONS

PART 2 CONTINUOUS MODELS
(First Revision)

1 SCOPE

1.1 This standard (Part 2) describes the most commonly used continuous statistical models, their potentiality and application in industries with suitable illustrations.
The models covered in this standard are normal. exponential, gamma, Weibull and lognormal.

2 REFERENCES

2.1 The following Indian Standards are necessary ayjuncts to this standard:

IS No.
Title
150 7920: 1985 Statistical vocabulary (first revision)
IS $9300 \quad$ Statistical models for industrial (Part 1): 1979 applications: Part 1 Discrete models

3 TERMINOLOGY

3.1 For the purpose of this standard, the definitions given in IS 7920: 1985 shall apply.

4 PROBABILITY DISTRIBUTIONS

4.1 When a random variable X takes continuous values, it is not possible to determine the probability of X taking any particular value. One may only consider the probability of \boldsymbol{x} taking any value within a very small interval of length $d . x$, that is, probability of X lying between x and $(x+d x)$ or between $[x-(d x / 2)]$ and $[x+(d x / 2)]$ as $\phi(x) d x$ where $\phi(x)$ is a continuous function of X and is called the probability density function or simply density funtion of X. The probability density function $\phi(x)$ is always non-negative and corresponds to p_{1} 's in the discrete case:

Thus $\int_{a}^{b} \phi(x) d x=1$
where x takes values between the interval (a, b)
4.2 Mean and Variance of Probability Distribution

The mean of the probability distribution is called the expected value of the variable X and denoted
by $E(X)$. The variance of the probability distribution is denoted by $V(X)$.

$$
E(X)=\int_{a}^{b} x \phi(x) d x
$$

and

$$
\begin{aligned}
V(X)= & \int_{a}^{b}[x-E(X)]^{2} \phi(x) d x \\
& \int_{a}^{b} x^{2} \phi(x) d x-[E(X)]^{2}
\end{aligned}
$$

5 NORMAL MODEL

5.1 In many practical situations in the industry and in the nature, there is a tendency for the observations to cluster around some central value, and at the same time the frequencies for observations above and below this central value have a declining trend and they taper off as one goes farther and farther.
5.2 A frequency curve obtained in such situations is symmetrical and bell-shaped as shown in Fig. 1. The curve, known as 'Normal Curve' has extensive applications in statistical theory and practice. In practice, many models can be well approximated by the normal model. From the point of view of presentation of data, the important property of the normal model is that a set of data constituting a random sample from such a model can be represented completely by the mean and standard deviation of the sample.
5.3 A normal model has the following properties:
a) It is symmetrical, unimodal and bellshaped;
b) The values of the mean, median and mode are identical;
c) It is uniquely determined by the two parameters, namely, mean and standard deviation;
d) In the family of normal curves, smaller the standard deviation, higher will be the peak:
e) 95.45 will

Fig. 1 A Typical. Normal Curve
of twice the standard deviation on either side of the mean. For the distance of thrice the standard deviation, the corresponding percentage is 99.73 ; and
f) If the original observations follow a normal model with mean μ and standard deviation σ, then the averages of random samples of size n drawn from this population also follow a normal model. The mean of the new model (of averages) is same as that of the original model, namely, μ and the standard deviation gets reduced to σ / \sqrt{n}.

NOTE - These properties have extensive applications in the control chart techniques and statistical tests of significance
5.4 The density function for the normal model is given by:

$$
\begin{aligned}
& y==\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right\} \\
& -\infty<x<+\infty
\end{aligned}
$$

where
y is the ordinate of the curve corresponding to the value x of the variable,
μ is the mean, and
σ is the standard deviation.
5.5 The deviation of the observed value x from the mean measured in the unit of standard deviation, that is, $z=(x-\mu) / \sigma$ is called 'standard normal variate'. In terms of the standard normal variate, the equation of the normal model becomes:

$$
y=\frac{1}{\sqrt{2 \pi}} \exp \frac{\left(-z^{2}\right)}{2}
$$

This model has the mean $==0$ and the standard deviation =1:
5.5.1 Considering the area under the standard normal curve to be equal to unity, the proportion of area to the left of any given value of the variable has been given in Annex A. This Annex may be used for finding the proportion (or percentage) of the area lying between any two values of the variable.
5.5.2 If it is desired to calculate the proportion of observations that will be less than a specified value x_{1}, then the standardized variate $z_{1}=\left(x_{1}-\mu\right) / \sigma$ shall be calculated and required proportion to the left of z_{1} shall be directly read from Anncx A.
5.5.3 If it is desired to calculate the proportion of observations that will be more than a specified value x_{2}, then the standardized variate $z_{2}=$ $\left(x_{2}-\mu\right) / \sigma$ shall be calculated. The corresponding proportion to the left of z_{2} as obtained from Annex A shall be substracted from 1 for getting the required proportion.
5.5.4 If the proportion of observations lying between any two values x_{1} and $x_{2}\left(x_{2}>\lambda_{1}\right)$ is required, the respective standardized variates $z_{1}=\left(x_{1}-\mu\right) / \sigma$ and $z_{2}=\left(x_{2}-\mu\right) / \sigma$ shall be computed. The proportions of observations less than z_{1} and z_{2} shall be read from Annex A and the difference between these two proportions will give the required proportion.

5.5.5 Example

The specification limit for weight per unit area of Indian Hessian is given as $299-329 \mathrm{~g} / \mathrm{m}^{2}$. The mean and standard deviation of the 225 observations on weight per unit area of Indian Hessian are 304.8 g and 7.0 g respectively. Find the percentage of material meeting the specification limits.
The standardized variates are given by:

$$
z_{1}=\frac{299-304 \cdot 8}{7}=\frac{-5 \cdot 8}{7}=-0.83
$$

and

$$
z_{2}=\frac{329-304 \cdot 8}{7}=\frac{24 \cdot 2}{7}=3.46
$$

From Annex A, the area under the normal curve to the left of standardized variate z_{1} is 0.2033 . The area under the normal curve to the left of standardized variate z_{2} is 0.99973 .
Hence the area under the normal curve between these two standardized variates z_{1} and z_{2}, that is, the proportion of material meeting the specification limits is 0.7964 or 79.64 percent.

5.5.6 Example

The specification limits for tensile strength for LPG cylinders is given as $36-46 \mathrm{~kg} / \mathrm{mm}^{2}$. The mean and standard deviation of 200 observations on tensile strength were calculated as $40.5 \mathrm{~kg} / \mathrm{mm}^{2}$ and $2.77 \mathrm{kgf} / \mathrm{mm}^{2}$ respectively. Find the percentage of LPG cylinders meeting the specified requirements.
The standardized variates are:

$$
\begin{aligned}
& z_{1}=\frac{36-40 \cdot 5}{2.77}=-1.62 \\
& z_{2}=\frac{46-40 \cdot 5}{2.77}=+1.99
\end{aligned}
$$

From Annex A, the area under the normal curve to the left of standardized variate z_{1} is 0.0526 . The area under the normal curve to the left of standardized variate z_{2} is 0.9767 . Hence the area under the normal curve between these two standardized variates z_{1} and z_{2}, that is, the proportion of cylinders meeting the specification limits is 0.9241 or 92.41 percent.

5.6 Fitting of Normal Model

A manufacturing process produces certain machinc bolts. A random sample of 1000 bolts is selected from a day's production. The diameter of these bolts at the threaded end is measured to the nearest one hundredth of a millimetre and grouped in a frequency distribution as shown in Table 1. Fit a normal model to the above data and test its goodness of fit.
5.6.1 First the sample mean \ddot{x} and standard deviation s are calculated from the frequency table. These values are as follows:

$$
\bar{x}=10.0666 \text { and } s=0.092
$$

5.6.2 The next step is to calculate the expected frequencies (E_{i}) based on the assumption
that the above frequency distribution is coming from a normal model. This step is accomplished in Table 2 with classes $-\infty$ and $1 . \infty$ respectively added at each end Z_{1} and Z_{2} shown in Table 2 are the standard normal variates for the lower and upper bounds of each class interval. The probability for each class interval is obtained from the table of areas under normal curve (see Annex A).

Table 1 Diameter of Bolts (mm)
(Cluuse 5.6)

Class Interval		Frequency
9.745-9.795		2
9.795-9.845		5
9.845-9.855		27
9.895-9.945		52
9.945-9.995		117
9.995.10.045		203
10.045-10.095		228
10.095-10.145		180
10.145-10.195		105
10.195-10.245		60
10.245-10.295		14
10.295-10.345		4
10.345-10.395		2
10.395-10.445		1
	Total	10.00

5.6.3 Goodncss of Fit from χ^{2} Test

After calculating the expected frequencies (E_{i}) for each class interval, their closeness with the observed frequencies (O_{1}) is tested with the help of x^{2} test by using the following formula:

$$
\chi^{2}=\sum_{i} \frac{\left(O_{1}-E_{1}\right)^{2}}{F_{1}}
$$

where each of the expected frequency is at least 5 . In case some expected frequencies are less

Table 2 Area Under Normal Curve for Each Class Interval
(Clauses 5.6.2 and 8.5.2)

Class Interval (1)	Z_{1} (2)	Z_{2} (3)	Probability $\left(Z_{1}<Z<Z_{2}\right)$ (4)	$\begin{gathered} E_{i} \\ (1000 \times 4) \\ (5) \end{gathered}$
$\cdots \infty-9.745$	$-\infty$	-3.49	0	0
9.745-9.795	-3.49	- 2.95	0.0016	1.6
9.795-9.845	-2.95	-2.40	0.0066	6.6
9.845-9.895	-2.40	-1.86	0.0232	232
9.895-9.045	-1.86	-1.32	0.0620	62.0
9.945-9.995	-1.32	-0.77	$0 \cdot 1272$	$127 \cdot 2$
9.995-10.045	-0.77	-0.23	0.1884	188.4
10.045-10.095	-0.23	0.32	0.2165	$216 \cdot 5$
10.095-10.145	0.32	0.86	0.1796	179.6
10.145-10.195	0.86	1.40	0.1141	$114 \cdot 1$
10.195-10.245	$1 \cdot 40$	1.95	0.0552	55.2
10.245-10.295	1.95	2.49	0.0192	$19 \cdot 2$
10.295-10.345	$2 \cdot 49$	3.03	0.0052	$5 \cdot 3$
10.345-10.395	3.03	3.58	00012	12
10.395-10.445	3.58	$4 \cdot 12$	ก	..
10.445- $+\infty$	$4 \cdot 12$	$+\infty$		
*				

than 5 , the adjacent classes are pooled so as to make the expected frequency for each class at least 5 .
5.6.4 From Table 3, there are 11 classes left after pooling from which the value of χ^{2} is calculated. But the degrees of freedom will be only 8 because 2 degrees of freedom are lost for estimating population parameters μ and σ from the sample data and the third degree of freedom for the condition that the sum of expected frequencies must be equal to sum of the observed frequencies. The value of x^{2} for 8 degrees of

- freedom and at 5 percent level of significance from Annex B is $15 \cdot 507$. Since the calculated value is less than the table value, the null hypothesis is accepted thereby meaning that the sample data has come from a normal model.

Fig. 2 Typical p.d.f. for Exponential Model

Table 3 Observed and Expected Frequencies
(Clauses 5.6.4 and 8.5.2)

Class Interval	Observed Frequencies (O_{1})	Expected Frequencies (E_{1})	$\left(O_{1}-E_{1}\right)$	$\left(O_{1}-E_{1}\right)^{2}$	$\left(O_{1}-E_{1}\right)^{2}$
(1)	(2)	(3)	(4)	(5)	(6)
$\left.\begin{array}{l} 9.745-9.795 \\ 9.795-9.845 \end{array}\right\}$	7	8.2	$-1 \cdot 2$	1.44	0.1756
9.845-9.895	27	23.2	3.8	14.44	0.6224
9.895-9.945	52	62.0	-10.0	$100 \cdot 00$	1.6129
9.945-9.995	117	$127 \cdot 2$	-10.2	104.04	0.8179
9.995-10.045	203	188.4	14.6	213.16	1.1314
10.045-10.095	228	216.5	11.5	$132 \cdot 25$	06109
10.095-10.145	180	179.6	0.4	0.16	$0 \cdot 0009$
10.145-10.195	105	114.1	-9.1	82.81	0.7258
10.195-10.245	60	55.2	$4 \cdot 8$	23.04	0.4174
10.245-10.295	14	19.2	-5.2	27.04	1.4083
$\left.\begin{array}{l} 10 \cdot 295-10.345 \\ 10.345-10.395 \\ 10.395-10.445 \end{array}\right\}$	7	6.4	0.6	036	0.0562
			Total		7.5797

6 EXPONENTIAL MODEL

6.1 This model has extensive applications in life testing and reliability calculations. For this model, the failure rate is constant and is the reciprocal of mean life.
6.2 The probability density function (p.d.f.) for this model is defined as:

$$
\begin{aligned}
y= & \frac{1}{\lambda} \exp \{-(x-\gamma) / \lambda\} \\
& \gamma<x<\infty \quad \text { and } \lambda>0
\end{aligned}
$$

where γ and $(1 / \lambda)$ are location and scale parameters respectively. ($1 / \lambda$) is also referred as failure rate.

Taking $\gamma=0$, the p.d.f. of the exponential model is usually defined as:

$$
\begin{aligned}
& y=(1 / \lambda) \exp (-x / \lambda) \\
& x>0 \quad \text { and } \quad \lambda>0
\end{aligned}
$$

6.2.1 A typical form of the p.d.f. of the exponential model is given in Fig. 2.

6.3 Mean and Variance

Mean	$=\gamma+\lambda=\lambda$ if γ is
taken as 0	
Variance	$=\lambda^{2}$
Standard deviation	$=\lambda$

Thus for exponential model, the failure rate is the reciprocal of mean life and it is fully specified by its mean. This model is very useful in describing the failure times of complex equipment.
6.4 Tables, for exponential model, have been given in Annex C. Fractional parts of the total area (under the exponential curve) greater than (x / λ) have been tabulated. Thus, for example, if $(x / \lambda)=0.45$, the probability of a value greater than (x / λ) is 0.6376 . It may also be noted that for the exponentially distributed population $36 \cdot 8$ percent of the values will be above the average and 63.2 percent below the average.

6.4.1 Example

Results of sample measurement indicate that for a particular equipment the mean time between
failures (commonly known as MTBF) is found to be 100 hours. What is the probability that the time between two successive failures of this equipment will be at least 5 hours.
The problem is to find the area under the curve beyond 5 hours
Here $\lambda=100$ hours $(x / \lambda)=5 / 100=0.05$
Corresponding to $(x / \lambda)=0.05$, the area from 0.05 to \propto from Annex C is 0.9512 , that is, $95 \cdot 12$ percent. Therefore, the chance that the equipment will operate without failure continuously for 5 hours or more is $95 \cdot 12$ percent.

6.5 Fitting an Exponential Model

Bcfore fitting an exponential model to a given data, it is necessary as a first step to examine whether mean and standard deviation calculated from the data are approximately of the same order. There is no point in fitting an exponential model if the mean and standard deviation differ widely. Once a model has been fitted, it is essential to carry out an exact test for goodness of fit.

6.5.1 Example

The following table gives the distribution of demand for samples for a two-month period. Fit an exponential model to the data and also test its goodness of fit.

Number of Units	
Demanded (x)	Observed Frequency
0	(O)
1	
2	8
3	8
4	5
5	4
6	
7	

From the above data,

$$
\bar{x}=2.42 \quad \text { and } \quad s=2.13
$$

As \bar{x} and s are approximately of same order, one can go for the actual fitting of data.
As mean $:=\lambda=2.42,(1 / \lambda)=0.41$ and the density function is:

$$
y=0.41 \exp (-0.41 x), x>0
$$

The probabilities for different values of x are calculated. Multiplying these probabilities by the total frequency, that is, 36 , the expected frequencies arc obtained (see Table 4).
The closeness of expected frequencies with the observed frequencies is tested by using X^{2} - test (see Table 5).

Table 4 Observed and Expected Frequencies
(Clause 6.5.1)

No. of Units Demanded, X	Observed Frequency, O	Expected Frequency, L
(1)	(2)	(3)
0	8	12
1	8	8
2	5	5
3	4	4
4	4	2
5	3	2
6	2	1
7	2	2

Table 5 Calculations for the χ^{2}. Test
(Clause 6.5.1)

From Table 5, the total number of classes after pooling are 5. Two degrees of freedom are apportioned for the total frequency and the estimation of the mean. Thus, $x^{2}-2.80$ is compared with the tabulated value of χ^{2} for 3 degrees of frecdom which is 7.82 at 5 percent level of significance (see Annex B). Since calculated value of $\boldsymbol{\gamma}^{2}$ is less than the tabulated value, the fit can be taken as a good one.

6.6 Reliability Estimation

The reliability of a unit (or a system) is defined as the probability that it will perform satisfactorily atleast for a specified pcriod of time, when used in the manner and for the purpose intended, without a major breakdown. If X is the life time of the unit, the reliability of the unit at time t is given by:

$$
R(t)-\operatorname{Prob}(x>t)=1-F(t)
$$

where $f(t)$ is the distribution function of the failure time and is defined as:

$$
F(t)=\operatorname{Prob}(X<t)=\int_{0}^{t} f(x) d x
$$

where $f(x)$ is the p.d.f. of a given model.
For exponential distribution:

$$
R(t)=\exp (-t / \bar{x})
$$

where $\ddot{x}=$ mean life

6.6.1 Examplo

A manut.
of elect1.1.1
purpose, a randcm sample of 20 tubes is put to test and their failure times (in hours) are given below:

$9 \cdot 9$	$35 \cdot 6$	$57 \cdot 9$	$94 \cdot 6$	$141 \cdot 4$
$154 \cdot 4$	$163 \cdot 3$	$226 \cdot 7$	$244 \cdot 3$	$337 \cdot 2$
$391 \cdot 8$	$417 \cdot 2$	$444 \cdot 6$	$461 \cdot 2$	$497 \cdot 1$
$582 \cdot 6$	$606 \cdot 8$	$616 \cdot 3$	$672 \cdot 0$	$784 \cdot 7$

Assuming that the failure rate is constant (exponential model), he wants to find the probability that an electronic tube will survive for at least 1000 h . For this purpose, the average is first calculated and then reliability.

$$
\begin{aligned}
\bar{x} & =\sum_{i=1}^{20} x_{1} / n=346.98 \\
R(t) & =\exp (-t / \bar{x}) \\
\text { At } t & =1000 \text { hours } \\
R(t) & =\exp (-1000 / 346.98)=0.056
\end{aligned}
$$

Therefore, the probability that an electronic tube will survive for at least 1000 h is only 5.6 percent.

6.7 Reliability Estimation with Censored Samples

6.7.1 General

In many practical situations it will not be possible to carry out life testing experiments on all the samples as these are usually destructive. In such cases, the experiment may be terminated either when a pre-assigned number of items, say r ($<n$) have failed (known as failure-censored samples) or the experiment may be terminated after a pre-assigned time (known as time-censored samples).

6.7.2 Failure - Censored Samples

Let n items were put to life test experiment and it was terminated when $r(<n)$ items failed. Let the failure times of r items be x_{1} $<x_{2}<\ldots \ldots .<x_{r}$ and ($n-r$) items survived until time x_{r}. The items that failed may or may not be replaced:

a) Without replacement

The maximum likelihood estimate of λ, a parameter of exponential model when failure items are not replaced, is given by:

$$
\hat{\lambda}=\left[\sum_{i=1}^{r} x_{i}+(n-r) x_{r}\right] / r
$$

b) With replacement

The maximum likelihood estimate of λ is given by:

$$
\hat{\lambda}=\left(n x_{r}\right) / r
$$

Reliability function, $R(t)=\exp (-t / \hat{\lambda})$

6.7.3 Example

60 items were placed on test and the test was terminated after the first 10 items failed. The
failure time (in hours) were recorded as follows:

85	151	280	376	492
520	623	715	820	914

Assuming the failure time distribution to be exponential, estimate the paramcter of exponential model and also the reliability at $t=600$ hours, if the failed items are:
a) not replaced, and
b) replaced.

In this example,

$$
n=60, \text { and } r=10
$$

When the items are not replaced,

$$
\begin{aligned}
& \hat{\lambda}=\left(\sum_{i=1}^{10} x_{1}+50 x_{10}\right) / 10=5068 \text { hours } \\
& K(600)-\exp (-600 / 5068)=-0.8887
\end{aligned}
$$

When the items are replaced.

$$
\begin{aligned}
& \hat{\lambda}=n x_{10}=5484 \text { hours } \\
& R(600)=\exp (-600 / 5484)=0.8967
\end{aligned}
$$

6.7.4 Time Censored Samples

Let there be m items that failed before stipulated time (t_{0}) and the failure times of these m items be $x_{1}<x_{2} \ldots \ldots<x_{\mathrm{m}}$. Let the items that failed are not replaced. The maximum likelihood estimate of λ is given by:

$$
\begin{aligned}
\hat{\lambda} & =\left\{\sum_{i-1}^{m} x_{1}+(n-m) t_{0}\right\} / m \quad m>0 \\
& =n t_{0}, m=0, \text { and } \\
R(t) & =\exp (-t / \hat{\lambda})
\end{aligned}
$$

7 GAMMA MODEL

7.1 In accordance with the parallel strand-theory where each component consists of many subcomponents in the manner of a multi-strand rope, the characteristic life pattern of the component is the sum of the characteristic life patterns of all sub-components. If the subcomponents follow the exponential model, then the main component can be expected to follow the gamma model.
7.2 The gamma model is actually the model of sum of n, identical and independent exponential variables. Thus the probability density function for the gamma model can be written as:

$$
y=\frac{(x / \lambda)^{n-1} e^{-x / \lambda}}{\lambda(n-1)!} \quad 0<x<\infty, \lambda>0
$$

When $n=1$, it reduces to exponential model discussed in 6.
Typical forms of the probability density function
of the gamma model are given in Fig. 3 (for $n=-1 / 2,1$ and 3).

Fig. 3 Typical p.d.f. of the Gamma Model

NOTE - Although gamma model has been obtained as the sum of n identical and independent exponential variables, it can be generalized to nonintegral values of n also. Its generalized form can then be written as:

$$
\left.y=(\lambda / \lambda)^{n} \cdot \frac{\exp }{\lambda} \frac{1}{\Gamma n}-(\lambda, \lambda)\right\}
$$

where
$\Gamma n=(n-1) \Gamma(n-1)$
$-(n-1)$! for all integral values.
$\Gamma 1 \quad 0!=1 ; \Gamma(1 / 2)-$ and $\Gamma 0=1$

7.3 Mean and Variance

$$
\begin{aligned}
& E(X)=n \lambda . \\
& V(X)-n \lambda^{2}, \text { and }
\end{aligned}
$$

$$
\text { Standard deviation }=\sqrt{n} \lambda .
$$

7.4 For the convenience of preparing tables and charts for the gamma model, it has been standardized. The standardized random variable is defined as:

$$
u=x / \lambda
$$

Thus the probability density function is given by:

$$
\begin{array}{cr}
\frac{e^{-u} u^{n-1}}{\Gamma n} & 0<u<\infty \\
E(u)=n & \text { and }
\end{array} V(u)=n, \text { and }, ~ l
$$

Standard deviation $=\sqrt{n}$.
For $n=1$, the model is called standardized exponential model.

8. LOG NORMAL MODEL

8.1 This model has been used to approximate wear out failures when the failure rate increases with time. Suppose the characteristic life pattern of the component is taken as the size of the fatigue crack at the successive stages of its growth. Assuming the proportional effect theory of failures wherein the crack growth at any stage is proportional to the crack size at the preceding stage for all stages, the size of the crack can be expected to follow the lognormal model.
8.2 If any variable X is lognormally distributed, then $\log _{\mathrm{n}} X$ is distributed normally.
The density function for lognormal model is given by:

$$
y=\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left\{-\left(\log _{n} X-\mu\right)^{2} / 2 \sigma^{2}\right\}
$$

where $\sigma>0$ and $0<X<\infty=0$ elsewhere
where μ and σ are the mean and standard deviation of the transformed characteristic $\log _{n} X$.
8.2.1 Typical forms of the probability density function of lognormal model are given in Fig. 4 (for $\sigma=0.3,1.0$ and 1.5)

Fig. 4 Typical p.d.f. of the Lognormal Model

8.3 Mean and Variance

Mean $=\exp \left(\mu+\frac{\sigma^{2}}{2}\right)$
Variance $=\left[\exp \left(2 \mu+\sigma^{2}\right)\right]\left[\exp \left(\sigma^{2}-1\right)\right]$ Standard deviation

$$
=\sqrt{\left[\exp \frac{\left(2 \mu+\sigma^{2}\right)}{2}\right]\left[\exp \left(\sigma^{2}-1\right)\right]}
$$

8.4 The fitting of a lognormal to the data can be done by first finding the natural logarithms of the
given varia ble X and then fitting a normal model to these values. A χ^{2} test can be carried out to examine the goodness of fit. Further, the mean and variance of the variable X can be calculated from the mean μ and standard deviation σ of $\log _{\mathrm{n}} X$ by the formula given in 8.3.

8.5 Example

A new control device was tested on 50 diesel locomotives. Whenever a device failed, the distance was recorded and the device was returned to the factory for failure analysis. The distance of each device is given in Table 6. The underlined failure mechanism suggested a lognormal model for time to failure. Test whether the data follows lognormal modell and also obtain its parameters.

Table 6 Distance in Million Metres to Failure
(Clause 8.5)

$36 \cdot 6$	$40 \cdot 4$	$44 \cdot 7$	$49 \cdot 4$	$54 \cdot 6$
$60 \cdot 3$	$63 \cdot 4$	$66 \cdot 7$	$73 \cdot 7$	$77 \cdot 5$
$81 \cdot 5$	$83 \cdot 1$	$85 \cdot 6$	$90 \cdot 0$	92.8
$94 \cdot 6$	$99 \cdot 5$	$104 \cdot 6$	$108 \cdot 8$	$111 \cdot 1$
$113 \cdot 3$	$115 \cdot 6$	$117 \cdot 9$	$120 \cdot 3$	$125 \cdot 2$
$127 \cdot 7$	$130 \cdot 3$	$133 \cdot 0$	$135 \cdot 6$	$138 \cdot 4$
$141 \cdot 2$	$144 \cdot 0$	$164 \cdot 0$	1690	$174 \cdot 2$
$179 \cdot 5$	$184 \cdot 9$	190.6	$196 \cdot 4$	$198 \cdot 3$
$212 \cdot 7$	$225 \cdot 9$	$239 \cdot 8$	$254 \cdot 7$	$267 \cdot 7$
$284 \cdot 3$	$314 \cdot 2$	$347 \cdot 2$	$383 \cdot 8$	$403 \cdot 4$

8.5.1 As mentioned in 8.4, the natural logarithms of these distances shall be first obtained and then a frequency table prepared (see Table 7).

Table 7 Frequency Tahle for Natural Logarithms of Distances
(Clause 8.5.1)

Class Intervals	Frequency
$3 \cdot 5-3 \cdot 8$	2
$3 \cdot 8 \cdot 4 \cdot 1$	3
$4 \cdot 1-4 \cdot 4$	5
$4 \cdot 4-4 \cdot 7$	9
$4 \cdot 7-5 \cdot 0$	13
$5 \cdot 0-5 \cdot 3$	8
$5 \cdot 3-5 \cdot 6$	5
$5 \cdot 6-5 \cdot 9$	
$5 \cdot 9-6 \cdot 2$	

8.5.2 The next step is to calculate the expected frequencies as calculated in 5.6.2 (see also Tables 2 and 3). The expected frequencies so calculated are given in Table 8.

Table 8 Expected Frequencies

(Clause 8.5.2)

Class Interval Z_{1}	Z_{1}	Probability $\left(Z_{1}<Z<Z_{2}\right)$	$E \mathrm{i}$
3.5.3.8 -	-1.79	0.0367	1.8
3.8-4.1 - 1.79	-1.28	0.0636	$3 \cdot 2$
4.1-4.4 - $1 \cdot 28$	-0.76	0.1233	$6 \cdot 2$
4.4.4.7 - 0.76	-0.24	$0 \cdot 1816$	$9 \cdot 1$
4.7.5.0 - 0.24	$+0.28$	0.2051	$10 \cdot 2$
$5.0 .5 .3+0.28$	+0.79	0.1749	8.7
5.3.5.6 +0.79	+1.31	$0 \cdot 1197$	$6 \cdot 0$
$5 \cdot 6.5 \cdot 9+1.31$	+1.83	0.0615	$3 \cdot 1$
$5 \cdot 9.6 \cdot 2+1.83$	+2.34	0.0240	$1 \cdot 1$
$6 \cdot 2$ and above +2.34	$+\infty$	0.0100	0.5

8.5.3 Goodness of Fit

The value of x^{2} calculated for the example is $1 \cdot 12$ (see Table 9). The table value of χ^{2} for 3 degrees of freedom at 5 percent level of significance is 7.82 (see Annex B). Since the calculated value is less than the table value, the null hypothesis that the data has come from a lognormal model is accepted.

9 WEIBULL MODEL

9.1 This model has extensive applications in reliability testing of complex items. The failure time of complex items, when plotted against time, generally assumes the shape of 'bath-tub' curve with 3 distinct phases, namely, debugging phase, chance failure phase and wear out phase. The Weibull model is capable of describing all these phases by taking appropriate values of the different parameters.
9.2 The Weibull is a family of models having the general density function as:

$$
y=\beta \lambda^{\beta}(x-\gamma)^{\beta-1} \exp \{-\lambda(x-\gamma)\}^{\beta}
$$

where
λ is the scale parameter $(\lambda>0)$, β is the shape parameter $(\beta>0)$, and γ is the location parameter $(\gamma<x<\infty)$.

Table 9 Observed and Expected Frequencies
(Clause 8.5.3)

9.3 The curve varies greatly depending on the values of these parameters. The location parameters is the smallest possible value of X. This is usually taken as 0 thereby simplifying the density function as:

$$
y=\beta \lambda^{\beta} x^{\beta-1} \exp \left\{-(\lambda x)^{\beta}\right\}, 0<x<\infty
$$

The shape parameter β reflects the pattern of the curve. When $\beta=1$, the Weibull model reduces to exponential model. When β is about 3.5 and $\lambda=1$, the Weibull model approximates to norms: model. The ability of this model has made it increasingly popular in practice because it reduces the problem of examining a set of data and deciding which of the several common models, like normal or exponential, would be most appropriate.
9.3.1 Typical forms of the probability density function of the Weibull model are given in Fig. 5 (for $\beta=1 / 2,1$ and 4).

9.4 Mean and Variance

$$
\begin{aligned}
\text { Mean } & =\gamma+\binom{1}{\lambda} \Gamma\left(\frac{1+\beta}{\beta}\right) \\
& =\frac{1}{\lambda} \Gamma\left(\frac{1+\beta}{\beta}\right), \text { When } \gamma \text { is taken as }
\end{aligned}
$$

0 , and

$$
\begin{aligned}
& \text { Variance }= \\
& \qquad \frac{1}{\lambda^{2}}\left[\Gamma\left(\frac{2+\beta}{\beta}\right)-\left\{\Gamma\left(\frac{1+\beta}{\beta}\right)\right\}^{2}\right]
\end{aligned}
$$

Standard deviation
$=\frac{1}{\lambda}\left[\Gamma\left(\frac{2+\beta}{\beta}\right)-\left\{\Gamma\left(\frac{1+\beta}{\beta}\right)\right\}^{2}\right]^{1 / 2}$

Fig. 5 Typical p.d.f. of the Weibull Model

ANNEX A

(Clauses 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.5, 5.5.6 and 5.6.2)

AREAS UNDER THE NORMAL CURVE

Proportion of total area under the curve left of $\frac{x_{1}-\mu}{\sigma}\left(x_{1}\right.$ represents any desired value of the variable x)

Normal Curve
The shaded portion is the area which is given in the table.

| | | | | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{2}-\mu$ | 0.09 | 0.08 | 0.07 | 0.06 | 0.05 | 0.04 | 0.03 | 0.02 | 0.01 | 0.00 |

(Continved)

IS 9300 (Part 2): 1989
AREAS UNDER THE NORMAL CURVE - Contd

$\frac{x_{1}-\mu}{0}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
$+0.0$	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
+0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
$+0.2$	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
+0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	06480	0.6517
$+0.4$	0.6554	0.6591	0.6628	0.6664	0.6700	0.6735	0.6772	0.6808	0.6844	0.6879
$+0.5$	0.6915	0.6950	0.6985	0.7019	0.7054	$0 \cdot 7088$	0.7123	0.7157	0.7199	$0 \cdot 7224$
$+0.6$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
10.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
$+0.8$	$\bigcirc 7881$	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8079	0.8106	0.8133
+0.9	6.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
-1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
$+1 \cdot 1$	0.8643	$0 \cdot 8665$	0.8686	08708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
$+1 \cdot 2$	0.8×49	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
$+1.3$	0.9032	0.0079	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
$+1.4$	0.9192	$0 \cdot 3207$	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
$+1 \cdot 5$	0.9332	0.4 .345	0.9357	0.9370	0.9383	0.9394	0.9406	0.9418	0.9429	0.9441
+1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
$+1.7$	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
$+1.8$	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.8693	0.9699	0.9706
$+1.9$	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
$+2.0$	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
+2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
$+2 \cdot 2$	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	9.9884	0.988%	0.9890
+2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
$+2.4$	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
$+2.5$	0.9938	0.9940	0.9941	0.994 3	0.9945	0.9946	0.9948	0.9949	0.9951	0.3952
- 2.6	0.9953	0.9955	0.9056	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
+2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
+2.8	0.9974	0.9975	0.9976	0.9977	0.5977	0.9978	0.9979	0.9979	0.9980	0.9981
+2.9	0.9981	0.9982	0.9983	0.5983	0.9984	0.9984	09985	0.9985	0.9986	0.9986
+3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
+3.1	0.99903	0.99906	0.99910	0.99913	0.99915	0.99918	0.99921	0.99924	0.99926	0.99929
+3.2	0.99931	0.99934	0.99936	0.99938	099940	0.09942	0.99944	0.99946	0.99948	0.99950
+-3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
$+3.4$	0.99966	0.99967	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
$+3.5$	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	$0 \cdot 99982$	0.99983	0.99983

ANNEX B

(Clauses 5.6.4, 6.5.1 and 8.5.3)

CRITICAL VALUES OF \boldsymbol{x}^{2}-DISTRIBUTION

Degrees of Freedom	Slgnificance Level		Degrees of Freedom	Significance Level	
	0.05	0.01		$0 \longdiv { 0 5 }$	0.01
(1)	(2)	(3)	(1)	(2)	(3)
1	$3 \cdot 84$	6.64			
2	$5 \cdot 99$	$9 \cdot 21$	20	31.41	$37 \cdot 57$
3	$7 \cdot 82$	11.34	21	32.67	$38 \cdot 93$
4	9.49	13.28	22	$33 \cdot 92$ 35.17	40.29
5	11.07	15.09	2.3	$35 \cdot 17$	41.64
6	12.59	$16 \cdot 81$	24	$36 \cdot 42$	42.98
7	14.07	$18 \cdot 48$	25	$37 \cdot 65$	$44 \cdot 31$
8	$15 \cdot 51$	20.09	26	$38 \cdot 89$	45.64
9	16.92	21.67	27	$40 \cdot 11$	46.96
10	$18 \cdot 31$	23.21	28	$41 \cdot 34$	48.28
11	19.68	24.73	29	$42 \cdot 56$	$49 \cdot 59$
12	21.03	26.22	30	$43 \cdot 77$ 55.75	50.89
13	$22 \cdot 36$	27.69	40	$55 \cdot 75$	63.69
14	23.69	29.14	50	67.50	$76 \cdot 15$ 88.38
15	25.00	$30 \cdot 58$	60	79.08	88.38
16	$26 \cdot 30$	32.00	70	90.53 101.88	$100 \cdot 42$
17	27.59	33.41	80	101.88	112.33
18	28.87	$34 \cdot 81$	90 100	$113 \cdot 14$	$124 \cdot 12$
19	$30 \cdot 14$	$36 \cdot 19$	100	$124 \cdot 34$	$135 \cdot 81$

ANNEX C
(Clauses 6.3 and 6.3.1)
PROPORTION OF THE AREA UNDER EXPONENTIAL DISTRIBUTION TO THE RIGHT OF THE VALUE X / λ

λ is the mean value

x / λ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	1.0000	0.9900	0.9802	0.9704	0.9608	0.9512	0.9418	0.9324	0.9231	0.9139
$0 \cdot 1$	0.9048	0.8958	0.8860	0.8781	0.8614	0.8694	0.8521	0.8437	0.8353	0.8270
0.2	0.8187	0.8106	0.8025	0.7945	0.7866	0.7788	0.7711	0.7634	0.7758	0.7483
0.3	0.7408	0.7334	0.7261	0.7189	0.7118	0.7047	0.6977	0.6907	0.6839	0.6771
0.4	0.6703	0.6637	0.6570	0.6505	0.6440	0.6376	0.6313	0.6250	0.6188	0.6126
0.5	0.6065	0.6005	0.5945	0.5886	0.5827	0.5769	0.5712	0.5655	065599	0.5543
0.6	0.5488	0.5434	0.5579	0.5326	0.5273	0.5220	0.5169	0.5117	0.5066	0.5016
0.7	0.4966	0.4916	04868	0.4819	0.4771	0.4724	0.4677	0.4630	0.4584	0.4538
0.8	0.4493	0.4449	0.4404	0.4360	0.4317	0×4274	0.4234	0.4190	0.4148	0.4107
0.9	0.4066	0.4025	0.3985	0.3946	0.3906	0.3867	0.3829	0.3791	0.3753	0.3716
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	0.3679	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019	0.1827	0.1653	$0 \cdot 1496$
2.0	0.1353	0.1225	$0 \cdot 1108$	0.1003	0.0907	0.0821	0.0743	0.0672	0.0608	0.0550
3.0	0.0498	0.0450	0.0408	0.0369	0.0334	0.0302	0.0273	0.0247	0.0224	0.0202
40	0.0183	0.0166	0.0150	0.0130	0.0123	0.0111	0.0101	0.0091	0.0082	0.0074
5.0	0.0067	0.0061	0.0055	0.0050	0.0045	0.0041	0.0037	0.0033	0.0030	0.0027
6.0	0.0025	0.0022	0.0020	0.0018	0.0017	0.0015	0.0014	0.0012	0.0011	0.0010

Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of stardardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publication), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Handbook' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc: No. STAT/EC 3 (268)

Amendments Issucd Since Publication

Amend No.	Date of Issue	Text Affected

\qquad
\qquad
BUREAU OF INDIAN STANDARDS

Headquarters:		
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002 Telephones: 32301 31, 323 3375, 3239402		Telegrams: Manaksanstha (Common to all offices)
Regional Offices:		Telephone
Central	: Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002	3237617,3233841
Eastern	: 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi CALCUTTA 700054	$\left\{\begin{array}{l} 3378499,3378561 \\ 3378626,3379120 \end{array}\right.$
Northern	: SCO 335-336, Sector 34-A, CHANDIGARH 160022	$\left\{\begin{array}{l} 603843 \\ 602025 \end{array}\right.$
Southern	: C.I.T. Campus, IV Cross Road, CHENNAI 600113	$\left\{\begin{array}{lll} 254 & 12 & 16,254 \\ 254 & 25 & 19, \end{array} 42541315\right.$
Western	: Manakalaya, E9 MIDC. Marol, Andheri (East) MUMBAI 400093	$\left\{\begin{array}{l} 8329295,8327858 \\ 8327891,8327892 \end{array}\right.$
Branches : AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH, PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.		

